三、解答题
22.(本小题满分14分)
已知函数![]()
(Ⅰ)若
,试确定函数
的单调区间;
(Ⅱ)若
,且对于任意
,
恒成立,试确定实数
的取值范围;
(Ⅲ)设函数
,求证:
.
本小题主要考查函数的单调性、极值、导数、不等式等基本知识,考查运用导数
研究函数性质的方法,考查分类讨论、化归以及数形结合等数学思想方法,考查
分析问题、解决问题的能力.满分14分.
解:(Ⅰ)由
得
,所以
.
由
得
,故
的单调递增区间是
,
由
得
,故
的单调递减区间是
.
(Ⅱ)由
可知
是偶函数.
于是
对任意
成立等价于
对任意
成立.
由
得
.
①当
时,
.
此时
在
上单调递增.
故
,符合题意.
②当
时,
.
当
变化时
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
|
|
单调递减 |
极小值 |
单调递增 |
由此可得,在
上,
.
依题意,
,又
.
综合①,②得,实数
的取值范围是
.
(Ⅲ)
,
![]()
,
,

由此得,![]()
故
.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。